
Resources and Resource Compilation

A Windows program stores its fonts, icons, cursors, bitmaps, and dialog boxes as resources. All the
resources your application uses are described in a resource definition script. I normally name my
resource file resources.rc. I add a line to the makefile to compile the resources with the windres
resource compiler. The output is an object file which is merged into the application during the link
phase.

I have added parts of the resources for S4L4 quadBounce here as an example. The resource.h file is
#included into resource.rc. resource.h keeps track of name, number pairs. This is a translation file
between the numbers used by the resource compiler and the text preferred by humans. The prefix to
any resource define gives a clue as to how and where it is used. IDI for icons, IDR for accelerators,
IDM for menus, IDD for dialog, and IDC for controls.

From resource.h

// glue indices
#define IDI_APPICON 101
#define IDI_SPAREICON 102
#define IDR_MAINMENU 103
#define IDR_ACCELERATOR 104

// menu choices
#define IDM_FILE_EXIT 4001
#define IDM_HELP_ABOUT 4002
#define IDM_FILE_RUN 4003
#define IDM_FILE_PAUSE 4004
#define IDM_PARAMETERS 4007
#define IDM_HELP_HELP 4008

// dialog choices
#define IDD_ABOUT_DIALOG 118
#define IDD_HELP_DIALOG 120
#define IDD_FIXED_DIALOG 121
#define IDD_RANDOM_DIALOG 122
#define IDD_MIXED_DIALOG 123
#define IDD_PARAM_DIALOG 124
#define IDD_CHOICE_DIALOG 125

// dialog control choices
#define IDC_RADUP 5001
#define IDC_RADIUS 5002
#define IDC_RADDOWN 5003

resource.rc uses the name, number pairs from resource.h then adds the windows.h header file. We start
by hooking our Bacona Design icon into the application. That is followed by our two menus: File and
Parameters. Menu item Run shows how you gray out the button. In this case Run is not implemented
so it cannot be triggered. One day <sigh>. Pause is also grayed. I put a check mark next to the menu
item Settings in the Parameters menu to show how that is done. Next, I show a few of the accelerator
keys you can use as short cuts to the about, help, and parameter dialog boxes, and to exit the app.

From resource.rc

#include <windows.h>
#include "resource.h"

// Win32 application icon.
IDI_APPICON ICON "BDc.ico"

// Our main menu.
IDR_MAINMENU MENU
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "Run", IDM_FILE_RUN, GRAYED
 MENUITEM "Pause", IDM_FILE_PAUSE, GRAYED
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_FILE_EXIT
 END

 POPUP "&Parameters"
 BEGIN
 MENUITEM "&Settings", IDM_PARAMETERS, CHECKED
 END

// Our accelerators.
IDR_ACCELERATOR ACCELERATORS
BEGIN
 "A", IDM_HELP_ABOUT, VIRTKEY, ALT, NOINVERT
 "H", IDM_HELP_HELP, VIRTKEY, ALT
 "S", IDM_PARAMETERS, VIRTKEY, ALT
 "X", IDM_FILE_EXIT, VIRTKEY, ALT
END

I have included the introductory “splash” dialog box too. These are all the details the dialog procedure
needs to do its job. Set up the window styles and caption, then set up the radio buttons, the text, and
the OK button.

IDD_CHOICE_DIALOG DIALOGEX 0, 0, 171, 95
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP | WS_CAPTION |
WS_SYSMENU
CAPTION "Population choice"
FONT 8, "MS Shell Dlg", 400, 0, 0x1
BEGIN
 CONTROL "Fixed size",IDC_FIXED,"Button", BS_AUTORADIOBUTTON,
20,18,47,10
 CONTROL "Mixed sizes", IDC_MIXED,"Button", BS_AUTORADIOBUTTON,
20,37,52,10
 CONTROL "Random sizes",IDC_RANDOM, "Button", BS_AUTORADIOBUTTON,
20,55,59,10
 DEFPUSHBUTTON "OK",IDOK,62,74,50,14
 LTEXT "Please choose a ",IDC_STATIC,96,25,54,8
 LTEXT "population type.",IDC_STATIC,96,36,54,8
END

Here is the description of one of the dialog boxes called from the choice dialog box. This is the screen
you’ll see often as you modify the parameter settings during a run. Once again, we set up the window
styles and caption. Then we add each of the various control buttons with their associated text. This
dialog does not understand typed input to modify parameter settings. Rather, it uses up and down push
buttons to control the settings.

IDD_PARAM_DIALOG DIALOGEX 0, 0, 280, 139
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP | WS_CAPTION |
WS_SYSMENU
CAPTION "Parameters"
FONT 8, "MS Shell Dlg", 400, 0, 0x1
BEGIN
 DEFPUSHBUTTON "OK",IDOK,147,109,50,14
 PUSHBUTTON "Larger",IDC_CONDUCTUP,17,33,50,14
 LTEXT "Static",IDC_CONDUCTION,33,56,30,8
 PUSHBUTTON "Smaller",IDC_CONDUCTDOWN,17,70,50,14
 PUSHBUTTON "Larger",IDC_AMBIENTUP,81,33,50,14
 LTEXT "Static",IDC_AMBIENT,99,56,30,8
 PUSHBUTTON "Smaller",IDC_AMBIENTDOWN,81,70,50,14
 PUSHBUTTON "Larger",IDC_HEATUP,145,33,50,14
 LTEXT "Static",IDC_HEAT,165,56,19,8
 PUSHBUTTON "Smaller",IDC_HEATDOWN,145,70,50,14
 LTEXT "Conduction",-1,24,22,37,8
 LTEXT "Ambient",-1,91,22,27,8
 LTEXT "Added Heat",-1,151,22,39,8
 PUSHBUTTON "Larger",IDC_TIMEUP,209,33,50,14
 LTEXT "Static",IDC_TIME,221,57,19,8
 PUSHBUTTON "Smaller",IDC_TIMEDOWN,209,70,50,14
 LTEXT "Time",-1,225,22,16,8
END

Here is the mixed population dialog box. Instead of labeling the push buttons with words I used < and
> instead. This let me shrink them considerably and you only need one line of text for each parameter,
flanked by the two buttons. Thus the current < parameter > value box format. Since each present value
box is an EDITTEXT you can type directly into each of them and change the setting that way. But I
found the < button ‘parameter name’ > button, value box, display format compact and descriptive.

IDD_MIXED_DIALOG DIALOGEX 0, 0, 198, 128
STYLE DS_SETFONT | DS_MODALFRAME | DS_FIXEDSYS | WS_POPUP | WS_CAPTION |
WS_SYSMENU
CAPTION "Mixed size population"
FONT 8, "MS Shell Dlg", 400, 0, 0x1
BEGIN
 EDITTEXT IDC_SBALLS,17,23,40,14,ES_AUTOHSCROLL
 EDITTEXT IDC_MBALLS,18,49,40,14,ES_AUTOHSCROLL
 EDITTEXT IDC_LBALLS,18,75,40,14,ES_AUTOHSCROLL
 PUSHBUTTON "<",IDC_SRADDN,158,24,9,9
 PUSHBUTTON ">",IDC_SRADUP,174,24,9,9
 PUSHBUTTON "<",IDC_MRADDN,158,48,9,9
 PUSHBUTTON ">",IDC_MRADUP,174,48,9,9
 PUSHBUTTON "<",IDC_LRADDN,158,75,9,9
 PUSHBUTTON ">",IDC_LRADUP,174,75,9,9
 DEFPUSHBUTTON "OK",IDOK,79,107,50,14

 LTEXT "# Balls",IDC_STATIC,24,7,22,8,0,WS_EX_RIGHT
 LTEXT "Small",IDC_STATIC,73,23,17,8
 LTEXT "Medium",IDC_STATIC,74,49,25,8
 LTEXT "Large",IDC_STATIC,75,75,19,8
 EDITTEXT IDC_SRAD,106,21,40,14,ES_AUTOHSCROLL
 EDITTEXT IDC_MRAD,106,46,40,14,ES_AUTOHSCROLL
 EDITTEXT IDC_LRAD,106,73,40,14,ES_AUTOHSCROLL
 LTEXT "Radius",IDC_STATIC,112,7,22,8
END

The makefile requires a few new lines. RC = windres to choose the windows resource compiler. The
link rule needs resource.o to include it in the executable. The resource compilation rule requires
resource.rc, the application manifest, our icon, and the resource.h file. The application manifest is an
XML file which identifies the parts to bind at run time. Mine has a list of supported Windows
operating systems, a version of Win32, and the version of Windows common controls. If you have
problems with resource compilation, simplify the rule. Use only resource.rc and resource.h to see if
they compile. Formatting in the makefile and in resource.rc is important. Indentations are one tab
NOT three spaces. That causes a few errors. It is best to show any hidden characters while you are
editing so you can debug your files. You may find tabs which have been implemented as a series of
spaces. This is not correct.

Makefile changes

CC = g++
RC = windres
APP = convectTM

bounce: bounce.o ball.o resource.o
 ${CC} -mwindows -o ${APP} bounce.o ball.o resource.o ${LSFLAGS}

resource.o: resource.rc Application.manifest BDc.ico resource.h
 ${RC} -i resource.rc -o resource.o

Once you have all the parts in place, and working, you will create an application with menus and dialog
boxes which is easy to expand and maintain. GUIs create a lot of drudge work, but using them does
impress people. The very same app could run via command line but now you have a graphics window,
menus, dialog boxes, and controls. This lets you modify your program’s behavior on the fly by
tweaking parameters using menus, accelerator keys, and dialog boxes.

